skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aird, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present predictions for the high-redshift halo–galaxy–supermassive black hole (SMBH) connection from the Trinity model. Matching a comprehensive compilation of galaxy (0 ≤ z ≤ 13) and SMBH data sets (0 ≤ z ≤ 6.5), Trinity finds: (1) The number of SMBHs with M• > 109 M⊙ in the observable Universe increases by five orders of magnitude from z ∼ 10 to z ∼ 2, and by another factor of ∼3 from z ∼ 2 to z = 0; (2) The M• > 109 and 1010 M⊙ SMBHs at z ∼ 6 live in haloes with ∼(2 − 3) and (3 − 5) × 1012 M⊙; (3) the newly discovered JWST AGN candidates at 7 ≲ z ≲ 11 are overmassive compared to the intrinsic SMBH mass–galaxy mass relation from Trinity, but they are still broadly consistent with Trinity predictions for flux limited AGN samples with Lauer bias. This bias favours the detection for overmassive SMBHs due to higher luminosities at a fixed Eddington ratio. However UHZ1’s M•/M* ratio is still some 1 dex higher than Trinity AGNs, indicating a discrepancy; (4) Trinity underpredicts the number densities of GN-z11 and CEERS_1019 analogues. But given the strong constraints from existing data in Trinity, the extra constraint from GN-z11 and CEERS_1019 does not significantly change trinity model results. (5) z = 6–10 quasar luminosity functions will reduce uncertainties in the trinity prediction of the z = 6–10 SMBH mass–galaxy mass relation by up to ∼0.5 dex. These luminosity functions will be available with future telescopes, such as Roman and Euclid. 
    more » « less
  2. ABSTRACT Using recent empirical constraints on the dark matter halo–galaxy–supermassive black hole (SMBH) connection from z = 0–7, we infer how undermassive, typical, and overmassive SMBHs contribute to the quasar luminosity function (QLF) at z = 6. We find that beyond Lbol = 5 × 1046 erg s−1, the z = 6 QLF is dominated by SMBHs that are at least 0.3 dex above the z = 6 median M•–M* relation. The QLF is dominated by typical SMBHs (i.e. within ±0.3 dex around the M•–M* relation) at Lbol ≲ 1045 erg s−1. At z ∼ 6, the intrinsic M•–M* relation for all SMBHs is slightly steeper than the z = 0 scaling, with a similar normalization at $$M_* \sim 10^{11} \, \mathrm{M}_\odot$$. We also predict the M•–M* relation for z = 6 bright quasars selected by different bolometric luminosity thresholds, finding very good agreement with observations. For quasars with Lbol > 3 × 1046 (1048) erg s−1, the scaling relation is shifted upwards by ∼0.35 (1.0) dex for 1011M⊙ galaxies. To accurately measure the intrinsic M•–M* relation, it is essential to include fainter quasars with Lbol ≲ 1045 erg s−1. At high redshifts, low-luminosity quasars are thus the best targets for understanding typical formation paths for SMBHs in galaxies. 
    more » « less
  3. ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete. 
    more » « less
  4. ABSTRACT We present a detailed study of a galaxy merger taking place at z = 1.89 in the GOODS-S field. Here, we analyse Keck/MOSFIRE spectroscopic observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey along with multiwavelength photometry assembled by the 3D-HST survey. The combined data set is modelled to infer the past star formation histories (SFHs) of both merging galaxies. They are found to be massive, with log10(M*/M⊙) > 11, with a close mass ratio satisfying the typical major-merger definition. Additionally, in the context of delayed-τ models, GOODS-S 43114, and GOODS-S 43683 have similar SFHs and low star formation rates (log10(SFR(SED)/$${\rm M}_{\odot }\,\rm {yr}^{-1}$$) < 1.0) compared to their past averages. The best-fitting model SEDs show elevated H δA values for both galaxies, indicating that their stellar spectra are dominated by A-type stars, and that star formation peaked ∼0.5−1 Gyr ago and has recently declined. Additionally, based on SED fitting both merging galaxies turned on and shut off star formation within a few hundred Myr of each other, suggesting that their bursts of star formation may be linked. Combining the SFHs and H δA results with recent galaxy merger simulations, we infer that these galaxies have recently completed their first pericentric passage and are moving apart. Finally, the relatively low second velocity moment of GOODS-S 43114, given its stellar mass suggests a disc-like structure. However, including the geometry of the galaxy in the modelling does not completely resolve the discrepancy between the dynamical and stellar masses. Future work is needed to resolve this inconsistency in mass. 
    more » « less
  5. ABSTRACT In large-scale hydrodynamical cosmological simulations, the fate of massive galaxies is mainly dictated by the modelling of feedback from active galactic nuclei (AGNs). The amount of energy released by AGN feedback is proportional to the mass that has been accreted on to the black holes (BHs), but the exact subgrid modelling of AGN feedback differs in all simulations. While modern simulations reliably produce populations of quiescent massive galaxies at z ≤ 2, it is also crucial to assess the similarities and differences of the responsible AGN populations. Here, we compare the AGN populations of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations. The AGN luminosity function (LF) varies significantly between simulations. Although in agreement with current observational constraints at z = 0, at higher redshift the agreement of the LFs deteriorates with most simulations producing too many AGNs of $$L_{\rm x, 2\!-\!10 \, keV}\sim 10^{43\!-\!44}\, \rm erg\, s^{-1}$$. AGN feedback in some simulations prevents the existence of any bright AGN with $$L_{\rm x, 2\!-\!10 \, keV}\geqslant 10^{45}\rm \,erg\, s^{-1}$$ (although this is sensitive to AGN variability), and leads to smaller fractions of AGN in massive galaxies than in the observations at z ≤ 2. We find that all the simulations fail at producing a number density of AGN in good agreement with observational constraints for both luminous ($$L_{\rm x, 2\!-\!10 \, keV}\sim 10^\text{43-45}\, \rm erg\, s^{-1}$$) and fainter ($$L_{\rm x, 2\!-\!10 \, keV}\sim 10^\text{42-43}\, \rm erg\, s^{-1}$$) AGNs and at both low and high redshifts. These differences can aid us in improving future BH and galaxy subgrid modelling in simulations. Upcoming X-ray missions (e.g. Athena, AXIS, and LynX) will bring faint AGNs to light and new powerful constraints. After accounting for AGN obscuration, we find that the predicted number density of detectable AGNs in future surveys spans at least one order of magnitude across the simulations, at any redshift. 
    more » « less
  6. null (Ed.)